On the algebraic structure of quasi-cyclic codes I: Finite fields
نویسندگان
چکیده
A new algebraic approach to quasi-cyclic codes is introduced. The key idea is to regard a quasi-cyclic code over a field as a linear code over an auxiliary ring. By the use of the Chinese Remainder Theorem (CRT), or of the Discrete Fourier Transform (DFT), that ring can be decomposed into a direct product of fields. That ring decomposition in turn yields a code construction from codes of lower lengths which turns out to be in some cases the celebrated squaring and cubing constructions and in other cases the recent ( + ) and Vandermonde constructions. All binary extended quadratic residue codes of length a multiple of three are shown to be attainable by the cubing construction. Quinting and septing constructions are introduced. Other results made possible by the ring decomposition are a characterization of self-dual quasi-cyclic codes, and a trace representation that generalizes that of cyclic codes.
منابع مشابه
On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots
A trace formula for quasi-cyclic codes over rings of characteristic not coprime with the co-index is derived. The main working tool is the Generalized Discrete Fourier Transform (GDFT), which in turn relies on the Hasse derivative of polynomials. A characterization of Type II self-dual quasi-cyclic codes of singly even co-index over finite fields of even characteristic follows. Implications for...
متن کاملOn the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings
The ring decomposition technique of part I is extended to the case when the factors in the direct product decomposition are no longer fields but arbitrary chain rings. This includes not only the case of quasi-cyclic codes over rings but also the case of quasi-cyclic codes over fields whose co-index is no longer prime to the characteristic of the field. A new quaternary construction of the Leech...
متن کاملCodes over a Non Chain Ring with Some Applications
An significant milestone study in coding theory recognized to be the paper written by Hammons at al. [1]. Fields are useful area for constructing codes but after the study [1] finite ring have received a great deal of attention. Most of the studies are concentrated on the case with codes over finite chain rings. However, optimal codes over nonchain rings exist (e.g see [2].) In [3], et al. stud...
متن کاملOn quasi-cyclic codes as a generalization of cyclic codes
In this article we see quasi-cyclic codes as block cyclic codes. We generalize some properties of cyclic codes to quasi-cyclic ones such as generator polynomials and ideals. Indeed we show a one-to-one correspondence between l-quasi-cyclic codes of length lm and ideals of Ml(Fq)[X]/(X m −1). This permits to construct new classes of codes, namely quasi-BCH and quasi-evaluation codes. We study th...
متن کاملEquivalence of Quasi-cyclic Codes over Finite Fields
This paper considers the equivalence problem for quasi-cyclic codes over finite fields. The results obtained are used to construct isodual quasi-cyclic codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001